摘要:为使水果采摘机器人在复杂情况下如树叶遮挡、果实目标尺度变化大等情况能准确地检测出水果,提出一种 YOLO (you only look once)改进模型与 NMS(non-maximum suppression)改进算法的目标检测方法。 首先,对传统 YOLO 深度卷积神经 网络架构进行改进,设计一种更细化的 SPP5(spatial pyramid pooling)特征融合网络模块,强化特征图多重感受野信息的融合, 并基于此模块提出一种 YOLOv4-SPP2-5 模型,在标准 YOLOv4 网络中跨层添加并改进 SPP 层,重新分布池化核大小,增强感受 野范围,从而降低目标误检率;其次,提出一种 Greedy-Confluence 的 NMS 改进算法,通过对高度接近的检测框直接抑制和对重 叠检测框综合考虑距离交并比 DIOU( distance-intersection over union)和加权接近度 WP(weighted proximity)的方法,均衡 NMS 的计算消耗并减少检测框的错误抑制,从而提高遮挡、重叠物体的检测精度;最后,分别对改进方法进行性能测试,验证方法的 可行性,随后制作水果检测数据集并进行格式转换和标签标注,然后采用数据增强技术对训练数据进行扩充,并使用 K-means++聚类方法获取先验锚定框,在计算机上进行了水果检测实验。 结果表明,基于改进 YOLO 网络及改进 NMS 的水果检 测方法在准确率方面有显著的提高,平均精度均值(mean average precision,MAP) 在 YOLOv4 上达到了 96. 65%,较原网络提升 1. 70%,并且实时性也得到了保证,在测试设备上达到了 39. 26 帧/ s。