基于 CEEMDAN-WP-SG 的 MEMS 陀螺仪去噪算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V241. 5

基金项目:


MEMS gyroscope denoising algorithm based on CEEMDAN-WP-SG
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了减小 MEMS 陀螺仪随机误差,提出了一种新的去噪算法。 该算法首先通过自适应噪声完备经验模态分解 (CEEMDAN)将原始数据分解为多个本征模态函数(IMF),并根据多尺度排列熵与马氏距离将 IMF 分为噪声 IMF、混叠 IMF 和 信号 IMF;其次对噪声 IMF 用小波包(WP)去噪,对混叠 IMF 用 Savitzky-Golay 滤波器(SG)去噪;最后,把处理后的 IMF 和信号 IMF 进行重构,得到去噪后的信号。 通过所提方法对 Bumps 信号进行实验分析,去噪后信号从 6 dB 提高至 17 dB,均方误差降 低 71. 9%;对实测陀螺仪静态数据进行分析,实验结果证明去噪后信号的角度随机游走降低 31. 5%,表明该方法能显著提高 MEMS 陀螺仪的精度。

    Abstract:

    A new denoising algorithm is proposed aiming to decrease the random error of MEMS gyroscope. Firstly, the original data is decomposed into multiple intrinsic mode functions ( IMFs) using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Then the IMFs are divided into noise IMF, mixed IMF, and signal IMF according to multi-scale permutation entropy with Mahalanobis distance. Next, the noise IMF is denoised by wavelet packet (WP) and the mixed IMF is denoised by Savitzky-Golay filter (SG). Finally, the denoised signal is obtained via reconstructing the processed IMF and the signal IMF. The bumps signal is increased from 6 dB to 17 dB, and the mean square error is reduced by 71. 9% after denoising through the proposed method. The angular random walk of the denoised signal is reduced by 31. 5% in the experimental analysis of the measured gyroscope static data, which illustrates that the proposed method can predominantly improve the accuracy of MEMS gyroscope accuracy.

    参考文献
    相似文献
    引证文献
引用本文

黄国峰,庄学彬,谢礼伟,曾小慧.基于 CEEMDAN-WP-SG 的 MEMS 陀螺仪去噪算法[J].电子测量与仪器学报,2022,36(4):106-113

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码