改进阈值函数的小波去噪算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391;TN713

基金项目:

国家重点研发计划(2021YFE0105500)、国家自然科学基金(62171228)、江苏省研究生科研与实践创新计划(SJCX22_0338)项目资助


Wavelet denoising algorithm with improved threshold function
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对小波软、硬阈值函数去噪后信号存在局部震荡和边缘模糊导致去噪效果不佳的问题,研究了小波去噪原理和优化 阈值函数的规则,设计了一种具有连续性、灵活性和恒定偏差小的可调阈值函数,提出了一种基于改进阈值函数的小波去噪算 法,将其应用于含有高斯白噪声的信号中进行去噪。 实验表明,相较于传统方法,所提方法对仿真信号和心电信号都具有灵活 性和适用性,并且去噪后信号的信噪比提升了 16. 21%,皮尔逊相关系数增大了 1. 62%。 因此,本文所提算法具有可行性,可有 效保留特征信息,去噪效果更加理想。

    Abstract:

    The principle of wavelet denoising and the rule of optimizing threshold function are studied, aiming at the problem that local oscillation and edge blur of signal after wavelet soft and hard threshold function denoising lead to poor denoising effect. An adjustable threshold function with continuity, flexibility and small constant deviation is designed. A wavelet denoising algorithm based on improved threshold function is proposed, which is applied to denoising signals containing Gaussian white noise. Experimental results show that compared with traditional methods, the proposed method has flexibility and applicability to simulated signals and ECG signals, and the signal-to-noise ratio of the signal after denoising is improved by 16. 21%, and the Pearson correlation coefficient is increased by 1. 62%. Therefore, the algorithm is feasible, which can effectively retain feature information, and the denoising effect is more ideal.

    参考文献
    相似文献
    引证文献
引用本文

吴叶丽,行鸿彦,李 瑾,张颖超,段儒杰.改进阈值函数的小波去噪算法[J].电子测量与仪器学报,2022,36(4):9-16

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码