结合注意力机制和密集连接网络的车辆检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4

基金项目:

天津市科技重大专项与工程(19ZXZNGX00060)项目资助


Vehicle detection method combining attention mechanism and dense connection network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高算法对车辆检测的准确性,解决原有算法在复杂交通场景下对车辆检测效果不佳的问题,提出一种基于注意力 机制和改进密集连接网络结构的车辆检测方法。 首先在过渡层中使用 SoftPool 整合密集块之间的特征信息;其次通过轻量化 通道注意力机制加强有效通道特征的表达,将其作为 Darknet-53 的深层特征提取层;引入 CIOU 损失作为模型的边界框位置预 测损失项,使用深度可分离卷积缩减模型体积;与原算法相比 mAP 值提高 2. 6%,模型体积缩减为原来的 42%,实验证明本算法 在复杂交通场景下具有良好的检测性能。

    Abstract:

    To improve the accuracy of the algorithm for vehicle detection and solve the problem that the original algorithm is not effective in the complex traffic scene, a vehicle detection method based on attention mechanism and improved densely connection network structure was proposed. Firstly, SoftPool was used in the transition layer to consolidate the characteristic information between the dense blocks. Secondly, the expression of effective channel features was enhanced by the lightweight channel attention mechanism, it was used as the deep feature extraction layer of Darknet-53. The CIOU loss was used as the prediction loss term of the bounding box position of the model, and reduce the model volume using deep separable convolution. Compared with the original algorithm, the mAP value is increased by 2. 6%, and the model volume is reduced to 42%. Experimental results show that the algorithm has good detection performance in complex traffic scene.

    参考文献
    相似文献
    引证文献
引用本文

梁继然,陈 壮,董国军,陈 琦,许延雷.结合注意力机制和密集连接网络的车辆检测方法[J].电子测量与仪器学报,2022,36(3):210-216

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码