基于历史认知的鲸鱼算法求解动态能耗
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP1; TN702

基金项目:

国防科工局十二五技术基础科研项目(JSJL2014209B005)、工信部“两机”重大专项基础研究项目(Z20210208)资助


Whale algorithm based on historical cognition for solving dynamic energy consumption
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高嵌入式实时系统的能耗管理效率,降低传统动态电压缩放对系统稳定性的影响,提出了基于历史认知的鲸鱼算 法支持下的动态能耗优化方案。 首先提出非线性动态控制收敛因子的策略,有效加快了算法收敛速度。 其次采用历史最优解 作为收缩包围机制中的种群干扰因子,设计了混合引导策略来平衡算法的局部开发和全局搜索能力。 最后根据动态电压缩放 技术可以实时改变处理器频率的特征,利用改进算法对任务量 10、30 和 50 进行优化,验证了改进算法的有效性。

    Abstract:

    In order to improve the energy consumption management efficiency of the embedded real-time system and reduce the impact of traditional dynamic voltage scaling technology on system stability, a dynamic energy consumption optimization scheme supported by whale algorithm based on historical cognition is proposed. Firstly, a nonlinear dynamic convergence factor control strategy is proposed, which can effectively accelerate the convergence speed of the algorithm. Secondly, using the historical optimum solutions as interference factors, a hybrid guided strategy is designed in the constriction and envelopment mechanism to balance the local development and global search capability of the algorithm. Finally, the frequency characteristics of the processor can be changed in real time according to the dynamic voltage scaling technology, the tasks 10, 30 and 50 are optimized by the algorithm, so as to verify the effectiveness of the improved algorithm.

    参考文献
    相似文献
    引证文献
引用本文

罗 钧,庞亚男,刘建强.基于历史认知的鲸鱼算法求解动态能耗[J].电子测量与仪器学报,2022,36(1):236-245

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码