风力发电机齿轮箱优化逐层故障诊断方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN919;TP274

基金项目:

国家自然科学基金(51577046)、国家自然科学基金(51977161)、国家自然科学基金(51977153)、国家自然科学基金重点项目(51637001)、国家重点研发计划“重大科学仪器设备开发”项目(2016YFF0102200)、装备预先研究重点项目(41402040301)资助


Optimized hierarchical diagnostic approach for wind turbine gearbox
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    风力发电机齿轮箱的故障诊断在风力发电机组正常运行中起着重要作用,除了识别故障类型外,故障的严重程度对风 机的维护也具有指导意义,因此,一种优化堆叠诊断结构(OSDS)被提出以识别故障类型和严重性。 首先对原始振动信号进行 压缩采样,然后将压缩样本分别输入第 1 层和第 2 层深度信任网络(DBN),对故障类型和严重性进行识别,同时采用混沌量子 粒子群优化算法(CQPSO)对每个 DBN 进行优化。 通过两组实验得到的结果表明,故障类型诊断准确率分别达到 99. 24%和 97. 21%,故障严重程度诊断准确率达到 99. 06%,同时诊断时间仅为 1. 493 和 2. 176 s。

    Abstract:

    Fault diagnosis for gearbox of wind turbine plays an important role in the normal operation of WT. Current studies commonly focus on diagnosis of fault types, nevertheless, in addition to identifying the fault type, the severity of the fault is also instructive for maintenance and repair for wind turbine. Thus, a novel optimized stacked diagnosis structure (OSDS) is proposed for identification of fault type and severity. Compressed sensing is adopted to implement compressed sampling of original vibration signals. Then, compressed samples are input into first and second layer deep belief networks ( DBNs) for identification of fault type and severity, separately. In addition, every single DBN in the OSDS is optimized with chaotic quantum particle swarm optimization ( CQPSO) algorithm. Comparison experiments based on bench mark gearbox fault data and working planetary gearbox show that the fault type diagnosis accuracy of this method reaches 99. 24% and 97. 21%, while the fault severity accuracy reaches 99. 06%. Meanwhile, the testing times are only 1. 493 and 2. 176 s.

    参考文献
    相似文献
    引证文献
引用本文

何怡刚,鲁 力,阮 义,袁伟博.风力发电机齿轮箱优化逐层故障诊断方法[J].电子测量与仪器学报,2022,36(1):89-97

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码