VMD 及 PSO 优化 SVM 的行星齿轮箱故障诊断
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH132. 41

基金项目:

国家重点研发计划项目(2020YFB1713203)、北京信息科技大学勤信人才项目(QXTCP C202120)资助


Fault diagnosis method of planetary gear box based on variational modal decomposition and particle swarm optimization support vector machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以故障高发的行星齿轮传动系统为对象,提出基于变分模态分解( variational mode decomposition, VMD)及粒子群算法 (particle swarm optimization,PSO)优化支持向量机( support vector machine, SVM)的故障诊断方法。 首先,对信号进行 VMD 分 解,采用改进小波降噪的方法处理分解后的本征模态分量(IMF),并对处理后的分量进行重构,凸显信号蕴含的信息;然后,对 处理后的振动信号进行特征提取,分别提取信号的样本熵和均方根误差,并组成输入矩阵;最后,引入 PSO 优化 SVM 的关键参 数,将提取的特征向量输入 PSO-SVM 进行训练和识别。 将该方法应用于行星传动试验平台获取的行星轮裂纹故障、太阳轮轮 齿故障及行星轮轴承故障信号,通过多维比较,验证了该方法的有效性。

    Abstract:

    This paper takes the planetary gear transmission system with high incidence of faults as the object, a fault diagnosis method based on variational mode decomposition (VMD) and particle swarm optimization (PSO) to optimize support vector machine (SVM) is presented. Firstly, the signal is decomposed by VMD, the decomposed components are processed by improved wavelet method, and the processed components are reconstructed to highlight the signal. The weak information of SVM is extracted. Then, the sample entropy and root mean square error of the processed vibration signal are extracted, and the input matrix is formed. Finally, PSO is introduced to optimize the key parameters of SVM, and the extracted eigenvectors are input into PSO-SVM for training and recognition. The method is applied to the planetary gear crack fault, the solar gear tooth fault and the planetary gear bearing fault signal obtained by the planetary transmission test platform. The effectiveness of the method is verified by multi-dimensional comparison.

    参考文献
    相似文献
    引证文献
引用本文

刘秀丽,王 鸽,吴国新,李相杰. VMD 及 PSO 优化 SVM 的行星齿轮箱故障诊断[J].电子测量与仪器学报,2022,36(1):54-61

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-06
  • 出版日期:
文章二维码