基于复合核 SVM 的智能电表基本误差预测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM933. 4

基金项目:

国家电网公司总部科技项目(5230HQ19000F)、湖南省研究生科研创新项目(CX20200426)资助


Prediction method of basic error of smart meter based on composite core SVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    智能电表作为电网的终端设备,其退化情况与工作环境、运行时间等因素密切相关。 针对复杂变量条件下智能电表退 化情况难以预测的问题,提出一种基于复合核支持向量机(support vector machine, SVM)的智能电表基本误差预测方法。 首先 对智能电表退化数据进行分析,采用皮尔逊相关性分析找出与智能电表基本误差相关性极强的环境变量。 然后,为进一步提取 数据退化特征,采用模糊 C 均值聚类算法对智能电表退化数据进行聚类,确定退化特征向量。 最后,基于高斯径向基核函数与 多项式核函数构造一种新的复合核 SVM 模型用以预测智能电表基本误差。 结合新疆地区智能电表退化数据对复合核 SVM 模 型性能进行验证,实验结果表明,复合核 SVM 模型可以准确预测复杂环境下智能电表的基本误差,其预测准确率高于贝叶斯方 法、神经网络方法以及经典 SVM 方法。

    Abstract:

    As the terminal equipment of the power grid, the degradation of smart meters is closely related to factors such as working environment and running time. Aiming at the problem that the degradation of smart meters under complex variable conditions is difficult to predict, a smart meter basic error prediction method based on the composite core support vector machine (SVM) is proposed. First, analyze the degradation data of smart meters, and use Pearson correlation analysis to find environmental variables that are highly correlated with the basic errors of smart meters. Then, in order to further extract the data degradation features, the fuzzy C-means clustering algorithm is used to cluster the smart meter degradation data and determine the degradation feature vector. Finally, based on the Gaussian radial basis kernel function and polynomial kernel function, a new composite kernel SVM model is constructed to predict the basic error of smart meters. The performance of the composite core SVM model is verified by combining the degradation data of smart meters in Xinjiang. The experimental results show that the composite core SVM model proposed in this paper can accurately predict the basic errors of smart meters in complex environments, and its prediction accuracy is higher than that of Bayesian methods. Neural network method and classic SVM method.

    参考文献
    相似文献
    引证文献
引用本文

王永超,唐 求,马 俊,邱 伟,杨莹莹.基于复合核 SVM 的智能电表基本误差预测方法[J].电子测量与仪器学报,2021,35(10):209-216

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-27
  • 出版日期:
文章二维码