改进的轻量化 YOLOv4 用于电子元器件检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 41;TN609

基金项目:

国家重点研发计划(2017YFB1303701)、国家重点自然基金(61733001)项目资助


Improved lightweight YOLOv4 for electronic components detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电子行业制造机器人对电子元器件检测精度低和速度慢的问题,提出基于改进 YOLOv4 的电子元器件检测方法。 对网络结构进行改进,利用深度可分离卷积代替 PAN 网络中的传统卷积,提高检测速度;利用一种具有线性瓶颈的逆残差结构 代替 CSP darknet53 主干网络,降低模型参数,进一步提高检测效率;在检测网络 YOLO head 前添加注意力机制,提高检测精度。 模拟工业传送带环境建立了电子元器件数据集并进行数据增强,相较于原算法,精度( mAP) 提高了 1. 31%,速度提高了 16. 34 fps,权重大小从 245 下降到 41. 20 MB。 研究可为相关电子行业制造机器人的研制提供技术参考。

    Abstract:

    Aiming at the problem of low accuracy and slow speed of electronic components detection by manufacturing robots in the electronics industry, an electronic component detection method based on improved YOLOv4 is proposed. The network structure was improved by using depth-separable convolution instead of the traditional convolution in PAN networks to improve the detection speed. An inverse residual structure with a linear bottleneck was used instead of the CSP darknet53 backbone network to reduce the model parameters and further improve the detection efficiency. An attention mechanism was added before the YOLO head of the detection network to improve the detection accuracy. A data set of electronic components was established to simulate the industrial environment with conveyor belt and the data was enhanced. Compared with the original algorithm, the accuracy (mAP) is increased by 1. 31%, the speed is increased by 16. 34 fps, and the weight size is reduced from 245 to 41. 20 MB. The research can provide technical reference for the development of manufacturing robots in the electronics industry.

    参考文献
    相似文献
    引证文献
引用本文

张明路,郭 策,吕晓玲,张 艳.改进的轻量化 YOLOv4 用于电子元器件检测[J].电子测量与仪器学报,2021,35(10):17-23

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-27
  • 出版日期:
文章二维码