摘要:基于分子筛床变压吸附原理的机载氧气浓缩器是飞机生命保障系统的核心部件,可以为飞行员在飞行过程中提供氧 气。 对机载氧气浓缩器进行退化分析,可以实现故障预警,对机载氧气浓缩器的视情维修和构建飞机健康管理系统具有重要意 义。 机载氧气浓缩器的退化过程可以分为平稳阶段和加速退化两个阶段,但是由于退化模式变化点的不确定性,导致了退化模 式转变的不确定性,因此正确识别退化模式转折点十分重要。 氧分压值是反映机载氧气浓缩器制氧能力的一个重要参数,利用 数据驱动的方法,针对模式转换的模糊性,首先提取数据的香农熵,然后通过转换卡尔曼(SKF)滤波器对实时数据样本进行处 理,根据稳态退化和加速退化两个滤波器之间的后验概率来识别当前的退化模式,识别结果与实际情况相符,最后与小波分解 和 K-means 算法进行对比,证明了基于信息熵的转换卡尔曼滤波器(Entropy-SKF)算法的有效性。