基于 FPGA 的静电层析成像监测系统研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

V241. 7;TN98

基金项目:

国家自然科学基金面上项目(61871379)、中央高校基本科研业务费中国民航大学专项(3122019052)资助


Research on electrostatic tomography monitoring system based on FPGA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    滑油磨粒静电监测技术中,磨粒出现在不同的径向位置时,传感器感应到的电荷量不同,传统的静电传感器很难获得准 确的磨粒的径向位置和数量。 为此,在阵列式静电传感器的基础上,设计并实现了 12 路信号调理电路,搭建基于现场可编程门 阵列(field programmable gate array,FPGA)的静电层析成像(electrostatic tomography,EST)高速数据采集系统,通过对滑油中的带 电小球进行监测实验验证系统的有效性和准确性。 结果表明,基于 FPGA 的 EST 成像系统可以满足实际测量的要求,实验结果 接近仿真结果,并能够准确判断滑油中的带电小球数目和位置,对不同位置的荷电磨粒均有较好的成像效果。 数据采集速率达 到 10 Msps,为进一步研究滑油磨粒实时无损监测提供参考。

    Abstract:

    In the electrostatic monitoring technology for abrasive particles in lubricating oil, the amount of induced charge measured by the sensor varies with the radial positions of the abrasive particles. The traditional electrostatic sensor is incapable of determining the accurate position and number of the abrasive particles. For this reason, this article designs an electrostatic tomography (EST) highspeed data collection system based on field programmable gate array (FPGA) and realizes 12-channel signal conditioning on the basis of the electrostatic sensor array. The effectiveness and accuracy of the EST system are verified by monitoring the charged metal balls in lubricating oil. The results show that the designed EST system can meet the practical measurement requirements and the experimental results are close to the simulation results. The amount and positions of the charged balls in the lubricating oil can be estimated correctly, and the imaging quality for charged balls in different positions is relatively good. The data collection rate reaches 10 MSPs, which provides a reference for the further study of real-time nondestructive monitoring of abrasive particles in lubricating oil.

    参考文献
    相似文献
    引证文献
引用本文

薛 倩,王一虎.基于 FPGA 的静电层析成像监测系统研究[J].电子测量与仪器学报,2021,35(8):53-61

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-27
  • 出版日期:
文章二维码