摘要:针对短时交通流量序列的非平稳性和随机性的特征,为提高短时交通流预测精度和收敛速度,提出一种基于自适应变 分模态分解(VMD)和结合注意力机制层的双向长短时记忆网络(BiLSTM)的组合预测模型。 首先,使用自适应变分模态分解 将时空交通流量序列分解为一系列有限带宽模态分量,细化了交通流信息,降低了非平稳性,提升了建模的精确度;其次,利用 结合注意力机制的双向长短时记忆网络挖掘分解后交通流量序列中的时空相关性,从而揭示其时空变化规律,从而进一步提升 了建模精确度,并且利用改进 Adam 算法进行网络权值优化,以加速了预测网络的训练收敛速度;最后,将各模态分量预测值叠 加求和作为最终交通流预测值。 实验结果表明,使用模态分解的预测模型预测性能明显优于未使用模态分解的预测模型,同时 自适应 VMD-Attention-BiLSTM 预测模型相较于 EEMD-Attention-BiLSTM 预测模型,均方根误差降低了 47. 1%,该组合预测模型 提升了预测精度,并且能够快速预测交通流量时间序列。