遗传算法优化 BP 神经网络的非接触式 血压估计方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP;TN

基金项目:

成都市重点研发支撑计划技术创新研发项目(2020YF0500056SN)资助


Non-contact blood pressure estimation method based on genetic algorithm optimized bp neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    血压是人体重要的生理参数,能够反应心脏泵血功能、外周血管阻力、血容,对其进行非接触连续测量在日常生活和诸 多应用场合中具有很重要的意义。 从面部视频中获取相关脉搏波信号,然后提取信号中与血压相关性高的特征参数,从而利用 这些参数建立血压估计的神经网络模型,并采用遗传算法对其进行优化。 通过验证得出遗传算法优化 BP 神经网络(GA-BP) 模型估计能力和拟合精度明显提高,且其估计结果满足相应血压测量标准并能实现血压非接触连续估计,其收缩压估计准确率 为 93. 1%,舒张压估计准确率为 96. 6%。 故通过脉搏波特征参数建立 GA-BP 模型是一种有效非接触式血压估计方法。

    Abstract:

    Blood pressure is an important physiological parameter of the human body, which can reflect the pumping function of the heart, peripheral vascular resistance, and blood volume. Non-contact continuous measurement of blood pressure is of great significance in daily life and many applications. This paper obtains the relevant pulse wave signal from the facial video, and then extracts the characteristic parameters of the signal that are highly correlated with blood pressure, so as to use these parameters to establish a neural network model for blood pressure estimation and optimize it by genetic algorithm. Through verification, it is concluded that the genetic algorithm optimized BP neural network ( GA-BP) model estimation ability and fitting accuracy are significantly improved, and the estimation results meet the blood pressure measurement standards while realize the non-contact continuous estimation of blood pressure. The estimated accuracy rate of systolic blood pressure was 93. 1%, and the estimated accuracy rate of diastolic blood pressure was 96. 6%. Therefore, the establishment of GA-BP model by pulse wave characteristic parameters is an effective non-contact estimation method of blood pressure.

    参考文献
    相似文献
    引证文献
引用本文

淳新益,郑秀娟,张 畅,张 昀,刘 凯.遗传算法优化 BP 神经网络的非接触式 血压估计方法[J].电子测量与仪器学报,2021,35(7):53-59

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-27
  • 出版日期:
文章二维码