基于 NAR 动态神经网络的 BDS 周跳探测与修复方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P228. 1;TN911. 72

基金项目:

合肥市北斗卫星导航重大应用示范项目资助


BDS cycle slip detection and repair method based on NAR dynamic neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对北斗导航定位系统(BDS)数据处理过程中出现的周跳问题,提出一种提升小波结合 NAR 动态神经网络的周跳探 测与修复方法。 首先构造了非差周跳检验量,通过提升小波法探测到周跳发生历元,再采用 NAR 动态神经网络法、改进 BP 神 经网络法以及传统多项式拟合法,分析对比不同方法周跳修复效果。 实验仿真结果表明,在周跳探测方面,提升小波法可有效 探测 0. 2 周以上的小周跳;在周跳修复方面,NAR 神经网络比改进 BP 神经网络的拟合度提高 40%左右,预测精度比改进的 BP 神经网络提高 50%左右,比传统多项式拟合法提高 10%以上,更适用于小周跳的探测与修复,进一步提高了定位精度。

    Abstract:

    Aiming at the cycle slip problem in the data processing of the Beidou navigation and positioning system (BDS), a method for detecting and repairing cycle slips based on lifting wavelet combined with NAR dynamic neural network is proposed. Firstly, the nondifference cycle slip test quantity is constructed, and the epoch of cycle slip is detected by the lifting wavelet method. Then, the NAR dynamic neural network method, the improved BP neural network method and the traditional polynomial fitting method are used to analyze and compare the effect of different methods on cycle slip repair. Experimental simulation results show that in cycle slip detection, the lifting wavelet method can effectively detect small cycle slips of more than 0. 2 weeks; in cycle slip repair, the NAR neural network improves the fit of the improved BP neural network by about 40%, and the prediction accuracy is about 50% higher than the improved BP neural network, and more than 10% higher than the traditional polynomial fitting method. It is more suitable for the detection and repair of small cycle slips, and further improves the positioning accuracy.

    参考文献
    相似文献
    引证文献
引用本文

刘 春,葸生宝,李维华,蒋文钢,陈 豪,何 敏.基于 NAR 动态神经网络的 BDS 周跳探测与修复方法[J].电子测量与仪器学报,2021,35(7):36-43

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-27
  • 出版日期:
文章二维码