摘要:针对当前管道气体压力无损检测困难的问题,结合超声波反射测压原理,提出了深度置信网络(DBN)提取超声回波幅 值特征的最小二乘法支持向量机(LSSVM)管道气体压力检测方法。 首先,通过 DBN 网络中的受限玻尔兹曼机(RBM)无监督 逐层学习提取特征;其次,通过标签层进行有监督的误差反向传播调节优化 DBN 各层 RBM 参数;最后,将优化后 DBN 网络提 取到的特征信号输入训练好的 LSSVM 完成气体压力的识别。 设计相关实验得到超声波数据进行模型测试,结果表明,DBNLSSVM 压力识别模型的压力识别平均相对误差为 0. 635 7%,低于 DBN-BP 模型的平均相对误差(1. 802 6%),能够较好地完成 对管道气体的压力检测工作。