复杂环境下课堂多人状态检测算法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP273;TH89

基金项目:

国家自然基金重点项目(61633016)、江苏省高校自然基金(18KJB510038)、江苏省333工程可研项目(BRA2018218)、国家级大学生创新创业训练计划资助项目(202010304065Z)资助


Research on multi-person detection algorithm in classroom in complex environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    新冠肺炎疫情背景下课堂多人佩戴口罩及姿态识别问题,提出了基于 YOLO 和 OpenPose 模型的课堂多人状态检测算 法。 提出的 Efficient-YOLO 模型,通过采用 CBAM 注意力模块、SPNET-NEW 模块,解决了多人遮挡和无规则化目标的口罩佩戴 检测精度问题。 此外,提出了一种轻量化的 Class-OpenPose 模型检测学生上课姿态,该算法在 OpenPose 模型基础上,使用 ShuffleNetV2-NEW 对传统模型在底层特征提取方面进行改进,实现了复杂环境下关键姿态点的实时准确检测。 实验表明,在课 堂多人异常状态检测任务中,Class-OpenPose 模型平均准确率高于传统模型,为 79. 0%,检测速度达到 13. 5 F/ s;Efficient-YOLO 口罩识别模型达到 83. 1%的平均准确率,检测时间仅需 31. 54 ms,为课堂学生状态检测提供了不错的算法思路。

    Abstract:

    Aiming at the problem of multi-person wearing masks in the classroom and gesture recognition in COVID-19, this paper presents a multi-person state detection algorithm, based on the YOLO and OpenPose models. The Efficient-YOLO model proposed in this paper uses the classical CBAM attention and SPNET-NEW modules to deal with the problems of multi-person occlusion and irregular targets. In addition, this paper presents a lightweight Class-OpenPose model to detect the students’ posture. Based on the OpenPose model, our proposed algorithm uses ShuffleNetV2-NEW to improve the traditional model in terms of low-level feature extraction, and extracts correct key posture points in complex environments and in real-time. Experiments show that in the multi-person abnormal event detection task, the average accuracy of the Class-OpenPose model is 79. 0% that is higher than that of the traditional model, and the detection speed reaches 13. 5 F/ s; the Efficient-YOLO mask recognition model achieves an average accuracy of 83. 1%, and the detection time is only 31. 54 ms, which provides a good algorithm idea for classroom student status detection.

    参考文献
    相似文献
    引证文献
引用本文

冯文宇,张宇豪,张 堃,费敏锐,徐 胜.复杂环境下课堂多人状态检测算法研究[J].电子测量与仪器学报,2021,35(6):53-62

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-27
  • 出版日期:
文章二维码