基于 WiFi 指纹的层级学习室内定位模型
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391;TN96

基金项目:

国家自然科学基金(U1813205)、汽车车身先进设计制造国家重点实验室(71765003)、电子制造业智能机器人技术湖南省重点实验室(2017TP1011)项目资助


Hierarchical deep learning model to locate the mobile device via WiFi fingerprints
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着物联网和信息技术的飞速发展,基于移动位置的服务近年来日益受到关注,同时也促进了室内定位技术的发展。 基于 WiFi 指纹的室内定位技术以其部署广泛、成本低廉等优点受到了学术界的广泛研究。 针对移动设备在室内环境中的定位 问题,提出了一种层级学习室内定位系统(hierarchical deep learning indoor localization framework, HDLIL)。 为获取和学习可靠的 指纹特征,采用基于变分自编码(variational autoencoder, VAE)的特征提取模块来表征训练数据的潜在表示。 通过构建多层神 经网络来分析输入特征与位置输出之间的关系,并在输出层连接 Softmax 分类器,预测移动设备的位置。 在定位阶段,移动设备 接收测试数据并发送定位请求,然后通过加载 HDLIL 估计该测试指纹的位置。 最后通过实验对 HDLIL 的定位性能进行了评 估,讨论了不同定位因素对结果的影响,验证了该定位算法的精度及鲁棒性。

    Abstract:

    With rapid development of internet of things ( IOT) and information technology, mobile location-based service ( LBS) is gaining more and more research focus in recent years. It also stimulates the development of indoor localization technology. Owing to the advantage of its pervasive deployment, WiFi fingerprint-based indoor localization has drawn much attention to academia. However, the fluctuation of WiFi signals and other interference always influence the localization performance. In this paper, a hierarchical deep learning indoor localization framework (HDLIL) is proposed to solve the problem of mobile device localization in indoor environments and predict the specific position. To capture and learn the reliable fingerprint features, a feature extraction module based on variational autoencoder (VAE) is introduced to characterize the latent representation of the training data. Also, to train the localization model, we feed the reconstructed training fingerprints as well as corresponding labels to a 3-layer deep neural network, of which the output of current layer is set as the input for the next layer, followed by a location output module based on the concatenated softmax classification. In the localization phase, the localization fingerprints ( testing fingerprints) is set as the input, the HDLIL model is invoked and the output of final layer is the predicted location of the mobile device. In addition, to evaluate the localization performance, we conducted the experiment in a real indoor scene, and several influence factors are discussed. The result indicates that the proposed HDLIL model can attain a superior localization performance.

    参考文献
    相似文献
    引证文献
引用本文

薛 敏,孙 炜,余洪山,张 星.基于 WiFi 指纹的层级学习室内定位模型[J].电子测量与仪器学报,2021,35(4):118-126

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-23
  • 出版日期:
文章二维码