基于卷积神经网络的 LED 灯类字体数字识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 41

基金项目:

国家自然科学基金(61540069)资助项目


Digital recognition of LED lights based on convolutional neural networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对自然场景下由 LED 灯组合形成的数字具有易受光照、背景和成像扭曲等因素影响识别困难的特点,提出了一种 LED-LeNet 卷积网络识别算法。 对自采集 LED 灯类字体数据集按数字进行分类,将图像 ROI 操作、分辨率调整至 32×32 和数据 增强等预处理后,在 LeNe-5 网络架构上通过卷积核重构、使用 Swish 激活函并数引入 Dropout 正则化等方法改进网络。 采用自 然场景下采集的交通信号灯倒计时数字图像数据库 TST 对算法进行了验证,算法识别正确率可达 99. 52%,识别速度为 1 ms。 实验结果表明在调整网络结构与卷积核参数并通过改变训练策略后算法识别 LED 灯类字体具有明显优势。

    Abstract:

    In order to solve the LED recognition problem that the number formed by the factors such as illumination, background, and image distortion in natural scene, a recognition algorithm of LED-LeNet convolutional network is proposed. Firstly, the self collected LED light font data set was classified according to the number. Image data preprocessing includes image ROI operation, resolution adjustment to 32 × 32 and data enhancement. The network was reconstructed by convolution kernel, swish activation function and dropout regularization which referred to LeNet-5 network. The algorithm was verified by TST digital image database of traffic signal countdown collected in natural scene. The recognition accuracy of the algorithm can reach 99. 52%, and the recognition speed was 1 ms. The experimental results show that the algorithm has obvious advantages in recognizing LED light fonts after adjusting the network structure and convolution kernel parameters and changing the training strategy.

    参考文献
    相似文献
    引证文献
引用本文

王立刚,张志佳,李 晋,范莹莹,刘立强.基于卷积神经网络的 LED 灯类字体数字识别[J].电子测量与仪器学报,2020,34(11):148-154

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-20
  • 出版日期:
文章二维码