摘要:大量电动汽车进行无序充电将给电网的安全运行带来“峰上加峰”的运行风险,作为一种移动的储能设备,大量电动汽 车的无序放电也会对电网的稳定性造成重要影响,因此对电动汽车的充放电行为进行有序引导十分必要。 首先,分析了某小区 电动汽车无序充放电的负荷情况,并以峰谷分时电价为引导,研究不同响应度的下的日负荷情况;在此基础上综合考虑用户侧 和电网侧利益,以电动汽车用户成本最低和小区日负荷峰谷差率最小为优化目标,选择峰谷分时区间为优化变量,构建电动汽 车最优充放电模型,分别采用基于 Pareto 最优的多目标遗传算法 NSGA-Ⅱ和基于 Pareto 最优的粒子群算法求解,得到最优充放 电时段,并对二者的优化结果进行比较。 最后利用蒙特卡洛算法对算例进行仿真和分析验证,结果表明,利用所提出的有序充 放电优化算法,用户可通过放电补偿充电费用,且 NSGA-Ⅱ算法更优。