摘要:为了解决传统算法对于铁路货运列车车号识别准确率不高问题,提出了一种面向铁路货车车号定位的 Faster R-CNN 神 经网络。 通过调整特征提取网络的相关尺寸参数及连接方式增强了最后一层卷积特征图的细节特征。 并采用 k-means++聚类 算法求取车号区域长宽比改进 anchor 尺寸设计,使目标检测框与实际车号区域更加贴合。 实验过程中,采用了数据增广、 dropout 方法提升网络的鲁棒性。 结果显示,改进 Faster R-CNN 网络在铁路货车车号定位精度达到了 93. 15%,召回率 90. 76%, 综合 F1 指标 91. 94%,也说明该方法能够对铁路货车车号准确定位,并为车号识别过程提供可靠的数据支持。