基于超螺旋滑模观测器的六相永磁同步电机失磁故障重构
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM351

基金项目:

国家自然科学基金( 61773159)、湖南省自然科学基金( 2020JJ6083,2018JJ4066,2019JJ40072)、湖南省研究生科研创新项目(CX20190861)资助


Reconstruction of demagnetization fault of six-phase permanent magnet synchronous motor based on super-twisting sliding-mode observer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对六相永磁同步电机在复杂运行工况下永磁体容易发生失磁故障的问题,提出一种基于超螺旋算法的永磁体失磁故 障重构方法。 首先,利用矢量空间解耦坐标变换(VSD)进行降阶和解耦,构建了六相永磁同步电机失磁故障数学模型。 其次, 以定子电流为状态变量,设计基于超螺旋算法的滑模观测器(STA-SMO),根据滑模等值原理实现转子磁链的实时重构,并采用 一种类二次型 Lyapunov 函数证明了所设计 STA-SMO 的稳定性。 最后通过仿真与实验验证了该方法的有效性,与传统滑模观 测器(SMO)相比,所设计的 STA-SMO 准确地实现了对失磁故障的重构,有效抑制了抖振,且鲁棒性更强。

    Abstract:

    Aiming at the problem that the permanent magnet of the six-phase permanent magnet synchronous motor (SP-PMSM) is prone to demagnetize under complex operating conditions, a reconstruction method of permanent demagnetization fault is proposed based on the super-twisting algorithm. Firstly, the mathematical model of the demagnetization fault for SP-PMSM is constructed based on the vector space decomposition (VSD) theory through order reduction and decoupling. Secondly, taking the stator current as the state variables, the sliding-mode observer is designed using the super-twisting algorithm. The real-time reconstruction of rotor flux is realized according to the principle of sliding mode equivalence. A kind of strong quadratic Lyapunov function is used to ensure the stability of STA-SMO. Finally, the simulation and experimental results demonstrate the effectiveness of the proposed method. Compared with the traditional sliding mode observer (SMO), the STA-SMO can reconstruct the demagnetization fault accurately, reduce chattering effectively and has a good robustness.

    参考文献
    相似文献
    引证文献
引用本文

赵凯辉,冷傲杰,何 静,陈 跃,周瑞睿,戴旺坷,吴思成.基于超螺旋滑模观测器的六相永磁同步电机失磁故障重构[J].电子测量与仪器学报,2020,34(10):39-47

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-20
  • 出版日期:
文章二维码