有色观测噪声下的自适应 UKF 在北斗多路径误差削弱中的研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P228. 1;TN911. 72

基金项目:

合肥市北斗卫星导航重大应用示范资助项目


Research on the Beidou multipath error reduction based on adaptive UKF algorithm under colored abservation noise
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对由环境复杂性而造成的北斗多路径误差不能有效削弱的问题, 提出了一种基于新的误差模型下的自适应无迹卡 尔曼滤波(UKF)方法。 该方法首先利用量测状态扩增法来解决量测噪声为有色噪声的问题,再用改进的 Sage-Husa 自适应 UKF 来动态估计系统噪声和量测噪声,从而解决噪声统计特性未定造成的误差削弱效果不明显的情况。 实验结果表明在有色 观测噪声下的改进 Sage-Husa 自适应 UKF 算法相比于传统 UKF,能够将多路径误差削弱近 60%,该方法在针对北斗定位中由于 多路径误差产生的噪声不可知的情况具有很强的适用性。

    Abstract:

    In order to solve the problem that the Beidou multipath error caused by environmental complexity cannot be effectively eliminated, an adaptive unscented Kalman filter (UKF) method based on a new error model is proposed. Firstly, the method uses the measurement state amplification method to solve the problem that the measurement noise is colored noise, and then uses the improved Sage-Husa adaptive UKF to dynamically estimate the system noise and measurement noise, so as to solve the situation that the error offset effect is not obviously caused by the undetermined statistical characteristics of noise. Comparing this method with the traditional UKF, the experimental results show that the improved Sage-Husa adaptive UKF algorithm under colored observation noise can reduce the multipath error bynearly 60%. This method has strong applicability for the case where the noise generated by the multipath error is unknown to the Beidou positioning.

    参考文献
    相似文献
    引证文献
引用本文

刘 春,卫吉祥,李维华,汪志宁,刘 滔.有色观测噪声下的自适应 UKF 在北斗多路径误差削弱中的研究[J].电子测量与仪器学报,2020,34(9):101-107

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-20
  • 出版日期:
文章二维码