摘要:复杂背景下红外多目标图像及视频的检测是目标检测的热点也是难点,为了更准确地检测出复杂背景下的红外目标, 将 YOLOv3 算法进行改进,首先通过在算法的原有基础上增加特征尺度,提高对距离远且背景复杂的待测图像的识别精度,并 将 BN 网络层与卷积神经网络层融合计算得到最后的检测结果,将原来的 YOLOv3 算法与改进后的算法的结果进行分析对比 可得,改进后的算法能够将平均识别精度从 64%提高到 88%,将 mAP 从 51. 73 提高到 59. 28,验证了改进后的 YOLOv3 算法在 红外目标检测下具有更好的性能,更明显的优势。