摘要:为了提高滚动轴承故障诊断率,充分利用时域、频域及时频域特征对轴承运行状态的识别能力的差异性,并考虑到特征 之间易出现不相关、冗余干扰等问题以及实际工程对简单、快速、有效的特征评估方法的需求,在构建轴承混合域特征集的基础 上,提出了一种位置优化 Fisher 测度(POFM)方法并将其应用于轴承故障特征选择。 该方法基于 Fisher 准则,引入中值法通过 多类样本的位置关系修正特征对状态分离聚合敏感程度的评估系数,从而筛选出能抑制状态间重合度的特征。 此外,针对智能 诊断模型确定最优特征集效率低的问题,提出了多维空间测度-Fisher 的特征集评估方法,通过计算不同维数候选特征集在多维 空间中的距离测度指标,基于极大值原则筛选出最优特征集。 最后,通过轴承故障实验对所提算法进行验证,实验结果表明,提 出方法得到的最优低维特征集可以有效诊断轴承故障,在特征组合数为 3 时支持向量机分类器诊断正确率达到了 99. 17%。