基于 PLL 自适应滑模观测器的 PMSM 无传感器控制
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM351;TN601

基金项目:

国家自然科学基金青年项目(61803345)、河南省科技开放合作项目(182106000032)资助


Adaptive sliding mode observer based on PLL in sensorless control of PMSM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统滑模观测器无传感器控制方法反电动势基波中高频谐波含量高、抖振严重以及转子位置估计误差大等问题, 提出了一种锁相环结构(PLL)自适应滑模观测器永磁同步电机无传感器控制方法。 首先,在满足 Lyapunov 稳定性的前提下,推 导并建立了反电动势的自适应律,通过构造自适应滑模观测器,使得反电动势观测误差迅速衰减;同时采用带有消除旋转影响 环节的锁相环得到转子位置,消除了转速变化的影响,进一步提高了观测精度;最后,在一台 2. 9 kW 表贴式永磁同步电机上进 行了实验验证。 实验结果表明,该方法有效地抑制了滑模抖振,降低了反电动势中的高频谐波,提高了转子位置的观测精度。

    Abstract:

    In the traditional sliding mode observer based sensorless field oriented control scheme for permanent magnet synchronous motor (PMSM), the fundamental wave of the observed back electromotive force ( back-EMF) has high frequency harmonics and chattering problem, and the observed rotor position is not accurate enough. Focused on these problems, a PLL adaptive sliding mode observer based sensorless control method for PMSM is proposed. Firstly, under the premise of Lyapunov stability, adaptive rule of back EMF is established and deduced. It makes the error of the observed back-EMF decline rapidly by constructing the adaptive sliding mode observer. Meanwhile, the rotor position is obtained by introducing the rotated influence immune phase-locked loop, which eliminates the influence of rotation speed change and further improves the observation accuracy. Finally, the experimental results based on a 2. 9 kW PMSM show that the proposed method can effectively suppress the chattering of the sliding mode, reduce the high frequency harmonics of the back-EMF, and improve the observation accuracy of the rotor position.

    参考文献
    相似文献
    引证文献
引用本文

申永鹏,郑竹风,王耀南,孟步敏,李会仙.基于 PLL 自适应滑模观测器的 PMSM 无传感器控制[J].电子测量与仪器学报,2020,34(8):22-29

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-20
  • 出版日期:
文章二维码