摘要:在无基准图的无人机返航过程中,实时图和航路点的景象匹配是无人机返航成功的关键。 为提高景象匹配的实时性和 鲁棒性,提出了基于加速分割检测特征(FAST)角点检测和快速视网膜关键点(FREAK)描述符的无人机景象匹配算法。 首先, 针对 FAST 角点检测方法的无尺度不变性、特征点数量冗余的缺点进行了改进;接着,对 FREAK 二进制描述符进行简化,以提 高匹配速度;然后,采用 K 近邻比值法和 RANSAC 方法进行特征的初匹配和精匹配,并建立定位模型,从而获得航路点与无人 机当前位置的实际距离和方位信息;最后,对算法的各项性能做实验验证。 所提出的算法定位方向偏差在 1°以内,像面距离偏 差稳定在 0. 6 pixel,运行时间 0. 43 s,远小于尺度不变特征转换(SIFT)和加速鲁棒特征(SURF)算法的处理时间。 在尺度变换 和噪声等条件变化的情况下,相比 SIFT 和 SURF 等算法,所提算法取得了较好的正确匹配率,具有更好的鲁棒性。 实验结果表 明所提出的算法鲁棒性好,运算速度快,尤其在视角变换方面表现优秀,更适合无人机视觉辅助导航。