基于经验模态分解的牵张反射起始点检测研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN06; R318. 04

基金项目:

国家自然科学基金(U1713210)资助项目


Stretch reflex onset detection based on empirical mode decomposition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对痉挛状态患者表面肌电信号易出现虚假的肌电峰值,引起牵张反射起始点前后的信号差异变小,提出经验模态分解去噪与改进样本熵识别的牵张反射起始点检测方法。首先用经验模态分解对肌电信号进行分解;然后以受试者静息状态下的表面肌电信号为参考,设定软阈值对分解的信号进行去噪;最后用改进样本熵识别牵张反射起始点。实验结果表明,经验模态分解算法可以有效地去除肌电信号噪声,而且在改进样本熵的最优参数下牵张反射起始点平均识别率为94%。

    Abstract:

    In view of the possibility of false peaks on the surface electromyography (sEMG) of patients with spasticity, leading to decreased signal differences before and after stretch reflex onset (SRO), a method for detecting SRO based on empirical mode decomposition (EMD) denoising and modified sample entropy recognition is proposed. First, the EMG signal is decomposed via EMD. Then, the soft threshold is set to denoise the decomposed signal on the basis of the sEMG signal of the subjects in resting state. Lastly, modified sample entropy is used to identify SRO. The experimental results show that the EMD algorithm can effectively remove noise from the EMG signal, and the average recognition rate of SRO under the optimal parameter of the modified sample entropy is 94%.

    参考文献
    相似文献
    引证文献
引用本文

杜明家,胡保华,肖飞云,刘正士,王 勇.基于经验模态分解的牵张反射起始点检测研究[J].电子测量与仪器学报,2020,34(4):27-32

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-15
  • 出版日期:
文章二维码