基于多尺度排列熵和改进多分类相关向量机的 滚动轴承故障诊断方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP181;TH133.3;TH13

基金项目:

国家自然科学基金(61763029)、大型电气传动系统与装备技术国家重点实验室开放基金(SKLLDJ012016020)资助项目


Rolling bearing fault diagnosis method based on multiscale permutation entropy and improved multiclass relevance vector machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的时域、频域和时频域参数提取方法,难以从滚动轴承振动信号中提取出丰富的故障特征问题,提出通过多尺度排列熵提取故障特征,并结合改进的多分类相关向量机进行故障诊断的方法。由于多分类相关向量机的核函数参数不具有自适应选择的能力对故障诊断精度有较大影响,通过一种新智能优化算法蝗虫优化算法改进多分类相关向量机,实现多分类相关向量机的自适应优化故障诊断。采用美国西储大学的试验数据验证表明,提出的优化故障诊断模型能够实现滚动轴承不同类型的故障诊断和不同故障程度的辨识,与粒子群优化多分类相关向量机的故障诊断模型相比,提出的故障诊断模型准确率达到了100%。

    Abstract:

    It’s difficult to extract the rich fault information from vibration signal by the traditional feature extraction methods of time domain, frequency domain and time frequency domain parameter. In order to solve this problem, a multiscale permutation entropy is proposed to extract fault features and combine the improved multiclass relevant vector machine to fault diagnosis. Since the kernel parameters of the multiclass relevant vector machine do not have the adaptive ability, it has the great influence on the accuracy of fault diagnosis. The multiclass relevance vector machine is improved by a grasshopper optimization algorithm to realize the adaptive fault diagnosis. The experimental data from the University of Western Reserve in the United States show that the proposed optimized fault diagnosis model can realize the fault diagnosis of different types and the identification of different fault degrees. Compared with the fault diagnosis model of particle swarm optimization optimizes multiclass relevant vector machine, the accuracy of proposed fault diagnosis model is 100%.

    参考文献
    相似文献
    引证文献
引用本文

陈 鹏,赵小强,朱奇先.基于多尺度排列熵和改进多分类相关向量机的 滚动轴承故障诊断方法[J].电子测量与仪器学报,2020,34(2):20-28

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-15
  • 出版日期: 2020-01-31
文章二维码