Research on the reliability of 1T1R nano-device in array integrated RNVM with 28 nm MOSFET
DOI:
CSTR:
Author:
Affiliation:

1.College of Automotive Technology, Zhejiang Technical Institute of Economics, Hangzhou 310018, China; 2.College of Mechanical Engineering, Zhejiang SciTech University, Hangzhou 310018, China; 3.College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China

Clc Number:

TN306;TB34

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the application reliability of the next generation of new electronic nano-devices, the storage-computing 1T1R nano-devices in array actively integrated RNVM with MOSFET based on the 28 nm CMOS process were designed and fabricated, and its comprehensive electrical performances were tested and evaluated in terms of switching ratio(107-8), operating voltage(±1 V), storage windows and so on. The specific reliability experiments were designed and implemented. The results indicated that the unique failure phenomena which did not occur separately in discrete devices truly existed in 1T1R nano-devices in array including the Ion/Ileak degradation (-44.90%/751.64%) of MOSFET in stress and the reverse hard-breakdown of RRAM during cycling tolerance. Taking the microscopic physics mechanism of nano-device into account, the conclusions were summarized that the unique reliability principles triggered by high source-drain voltage and weak gate-control conditions were attributed to the complex micro interaction mechanisms due to its unique structural features and operating modes of 1T1R nano-devices in array. The pertinently specialized test regulation schemes were proposed to improve the reliability of 1T1R nano-devices in array. References for resolving the unique reliability issues caused by the integration of RNVM nanotechnology with logic devices at 28 nm CMOS nodes and below were provided.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: November 22,2024
  • Published:
Article QR Code