Abstract:The existence of eddy current loss leads to a reduction in the energy transfer efficiency and signal transmission quality of simultaneously wireless power and data transfer utilized for metal shaft monitoring. To address this issue, an analysis and derivation of eddy current loss in metal rotors were conducted. Subsequently, a coupling coil circuit model incorporating the equivalent impedance of eddy current loss was established. Building upon the S-S type signal injection SWPDT system, the energy transfer and data transmission characteristics were analyzed. Employing energy transfer efficiency and data transmission gain as optimization objectives, a multi-objective particle swarm optimization algorithm was utilized to optimize the critical parameters of the system. An experimental test platform was constructed based on the optimized parameters. The results demonstrated that the proposed optimization scheme achieves 46.7% energy transfer efficiency and a data transmission rate of 250 kbit/s in metal shaft environment, thus validating the correctness and feasibility of the proposed optimization approach.