Traffic flow prediction model based on spatial-temporal aware Transformer
DOI:
CSTR:
Author:
Affiliation:

1.School of Transportation and Civil Engineering, Nantong University,Nantong 226019, China; 2.School of Information Science and Technology, Nantong University,Nantong 226019, China

Clc Number:

U491.14;TN953.1

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Traffic flow prediction is a hot research area in intelligent transportation systems, and the fundamental challenge is to effectively model the complex spatial-temporal correlations in traffic data. To address the problem that most existing spatial-temporal Transformer models ignore the important effects of temporal trend and spatial heterogeneity when constructing spatial-temporal correlation matrices, a traffic flow prediction model based on Spatial-Temporal Aware Transformer (STAFormer) is proposed. First, an improved spatial-temporal aware self-attention mechanism is used to mine potential temporal trend and spatial heterogeneity features in traffic flow data, establishing an accurate spatial-temporal correlation matrix to obtain global spatial-temporal features. Then, the multi-range diffusion convolution is used to simulate the multi-order diffusion process of traffic flow in the road network to capture the local spatial features. Finally, the multivariate feature fusion module is used to adaptively fuse the captured spatial-temporal features and output the prediction results. Experiments are conducted on two real traffic datasets, i.e. PeMS04 and PeMS08, and the results show that, compared with the recently proposed Transformer-based models such as RPConvformer, ASTGNN, and PDFormer, the mean absolute errors of STAFormer are reduced by 8.0%, 6.5%, and 2.0%, respectively.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: September 12,2024
  • Published:
Article QR Code