Research on 3D path planning based on improved particle swarm optimization
DOI:
CSTR:
Author:
Affiliation:

School of Big Data and Information Engineering, Guizhou University,Guizhou 550025,China

Clc Number:

TP301.6

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the problems that the basic particle swarm optimization (PSO) Algorithm is fast in convergence and easy to premature maturity, and is prone to fall into local misunderstandings, this paper proposes a particle swarm-artificial bee swarm hybrid (PSO-ABC) algorithm, which is applied to path planning in the three-dimensional of UAV. Based on the improved PSO, the algorithm integrates the ABC algorithm to plan globally the three-dimensional path of UAV. First, the nonlinear inertia weight and shrinkage factor are introduced to improve the particle velocity formula, and then the search operator of the ABC is used to search for the optimal solution again, which solves the problem that the PSO algorithm falls into a local misunderstanding due to its poor local search ability. In this paper, two groups of experiments are set up in a three-dimensional environment to compare the path optimization performance of PSO-ABC algorithm, PSO and ABC algorithm. The experimental results show that the path optimization ability of the algorithm proposed in this paper has been improved, which is 6.1% higher than that of the PSO, and 6.9% higher than that of the ABC.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: January 31,2024
  • Published:
Article QR Code