Research on tire X-ray image anomaly detection based on neural batch sampling
DOI:
CSTR:
Author:
Affiliation:

1.Shenyang Ligong University,Shenyang 110000,China; 2.Sports Equipment Industry Technology Research Institute, Shenyang University of Technology,Shenyang 110870,China

Clc Number:

TP2

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Tire defect detection has important reference significance for tire grading, and it is particularly important to study the high performance tire anomaly detection method. Based on reinforcement learning algorithm, an automatic image classification algorithm based on abnormal loss value is proposed. This method firstly by a large number of positive samples input to reduce the loss value of data after gradient update, with a small amount of the loss of the abnormal sample input values form the obvious difference, introducing neural sampler, enlarge abnormal loss of contour difference between samples and the positive samples and provide training to sVAE batch, then put the training result as input of abnormal classifier, Finally, the classification and location of anomaly detection are completed. Through comparative study, it is found that the anomaly detection algorithm proposed in this paper is obviously superior to other traditional image anomaly detection methods in tire defect sample sets.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: February 22,2024
  • Published:
Article QR Code