Non-ferrous metal smelting process identification based on machine learning
DOI:
CSTR:
Author:
Affiliation:

1. School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China; 2. Xiangyang Industrial Institute of Hubei University of Technology, Xiangyang 441100, China.

Clc Number:

TM714

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to realize the accurate identification of production processes, a process identification model based on machine learning was proposed. Time convolution network, long and short term memory network and support vector machine were selected to build the process identification model, and the model was tested and verified with the production energy consumption data of a titanium metal refining enterprise. Firstly, the historical power and process data were preprocessed, and then the model training and testing data set was constructed according to the production characteristics. Finally, the model was trained and tested based on the data set. The results shows that the recognition model based on time convolution network has a high accuracy of process identification, and the accuracy of process identification for test sets reaches 96.94%.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: March 08,2024
  • Published:
Article QR Code