A Ship Detection Algorithm Based on Feature Reuse Pyramid
DOI:
CSTR:
Author:
Affiliation:

North University of China, School of information and communication engineering, Taiyuan 030051, China

Clc Number:

TP751

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the problem that the existing algorithms are difficult to extract fuzzy target features in the SAR image ship target detection scene, a ship target detection algorithm based on feature reuse pyramid is proposed. The proposed algorithm takes YOLOV4-tiny as the main body. First, a linear factor is introduced into the K-Means algorithm to integrate the initial anchor frame to enhance the adaptability of the network to multi-scale targets. Secondly, an attention mechanism is added to the backbone CSPDarknet53-tiny to suppress interference. information, and weaken the influence of complex background; finally, the feature reuse mechanism is used to strengthen the feature pyramid and improve the network's ability to extract fuzzy target features. The experimental results show that, compared with the YOLOV4-tiny network, the average detection accuracy of the improved algorithm on the SSDD dataset is improved by 11.79%, which proves the effectiveness of the improved algorithm in ship detection.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: April 07,2024
  • Published:
Article QR Code