查 询 高级检索+
共找到相关记录1条
    全 选
    显示方式:|
    • 面向无人机监控的动态多尺度目标检测模型的研究与实现

      2024, 47(10):141-150.

      关键词:注意力机制;多尺度;解耦头;可变形卷积;DFPN
      摘要 (108)HTML (0)PDF 25.42 M (302)收藏

      摘要:在无人机侦察、安防监控以及自动驾驶等领域中,目标检测技术面临巨大的挑战,图像中的目标往往具有多尺度属性,尤其是小尺寸目标检测难,以及目标很容易受到不同程度的遮挡。针对这些亟待解决的问题,本文提出了一种创新的动态多尺度目标检测模型:YOLO-DDE。首先,本文了提出了CEMA和CED卷积模块,增强了骨干网络对多尺度信息的处理能力精细特征提取能力,从而实现在复杂场景下更加精确的识别效果。此外,本文通过对FPAN网络结构进行创新性重构,提出了DFPN结构,此结构采用纵向跨尺度融合技术,显著提升了模型的尺度特征融合效果。最后,引入了动态检测头,提出了DD-Head结构,强化了模型对下游任务处理的能力。综上所述,本文提出的YOLO-DDE模型以其动态多尺度结构,为目标检测技术的性能提升提供了新的可能性。本文在PASCAL VOC数据集上进行了消融实验和对比试验,与当前主流先进模型YOLOv8相比,本文模型YOLO-DDE在评价指标map50和map50.95上分别提升了1.8%和3.2%,并且本文还在VisDrone、HIT-UAV、FAIR1M2.0数据集上进行了泛化性实验,验证了模型具有很强的泛化能力。

    上一页1下一页
    共1页1条记录 跳转到GO
出版年份