基于改进YOLOv8的布匹缝头检测算法
DOI:
CSTR:
作者:
作者单位:

江苏海洋大学

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学(编号62271236)


Fabric Seam Detection Algorithms Based on Improved YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    工业场景下的布匹缝头检测在纺织应用领域越来越重要。然而,缝头检测面临着小目标尺寸、可利用特征少、复杂多变的环境因素等挑战,难以保证稳定且实时的检测的效果。针对这一系列问题提出一种基于改进YOLOv8的布匹缝头检测算法YOLOv8-DVB。根据Deformable Convolutional Networks v4的特点优化C2f模块,提出一种多尺寸特征采样的C2f-DCNv4模块,强化网络对不同尺寸特征信息的提取。在颈部网络,采用BiFPN结构作为特征融合的方式,通过引入自上而下和自下而上的双向通路,使得不同尺度的特征可以在多层次上进行更充分的融合。其次,引入更高效的VoV-GSCSP模块轻量化特征融合网络,帮助颈部网络降低计算量和参数量,减少计算负担。最后,设计一个专门的小目标检测层,优化小目标的特征提取。通过实验对YOLOV8-DVB模型与原模型以及YOLOv5、YOLOv7、和Faster R-CNN等进行比较,验证模型的检测准确率和检测精度。实验结果表明,该方法在自建数据集上获得84.7%的检测准确率,相比于原模型和其他网络模型都有着更高的准确率,能够快速有效的在复杂的工业生产环境中准确的检测到目标类别和位置。

    Abstract:

    Fabric seams detection in industrial setting is becoming increasingly important in textile applications. However, seam detection faces challenges such as small target size, few available features, and complex environmental factors, which make it difficult to ensure stable and real-time detection results. A fabric seam detection algorithm YOLOv8-DVB based on improved YOLOv8 is proposed to address this series of problems. The C2f module is optimized based on the characteristics of Deformable Convolutional Networks v4, a C2f-DCN module with multi-size feature sampling is proposed to strengthen the network"s extraction of feature information of different sizes. In the neck, the BiFPN structure is used as a feature fusion approach, which allows features of different scales to be more fully fused at multiple levels by introducing top-down and bottom-up bidirectional pathways. Additionally, a more efficient VoV-GSCSP module is introduced to lightweight the feature fusion network, which helps the neck network to reduce the computational load and parameter count. Finally, a dedicated small target detection layer is designed to optimize the feature extraction of small targets. YOLOv8-DVB is compared with the original model as well as YOLOv5, YOLOv7, and Faster R-CNN through experiments to verify the detection accuracy and detection precision. The experimental results show that the method obtains 84.7% detection accuracy on the self-constructed dataset, which is higher than the original model and other network models, and is able to quickly and effectively accurately detect the target categories and locations in complex industrial environments.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-12
  • 最后修改日期:2024-12-11
  • 录用日期:2024-12-17
  • 在线发布日期:
  • 出版日期:
文章二维码
×
《电子测量技术》
财务封账不开票通知