一种抗差估计的GNSS/UWB/IMU集成式室内外无缝定位方法
作者单位:

北京信息科技大学

中图分类号:

TN967.2

基金项目:

国家自然科学基金面上项目(62471048);装发教育部联合基金青年项目(8091B03032311);北京市自然科学基金面上项目(4212003)


GNSS/UWB/IMU integrated indoor and outdoor seamless positioning method with robustness estimation
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对单导航源定位系统在室内外场景切换时存在定位精度低和连续性差的问题,提出了一种抗差估计的GNSS/UWB/IMU集成式室内外无缝导航定位方法。在面对室内外复杂场景切换的情况下,采用抗差估计算法对GNSS与UWB的观测信号进行置信度评估和融合,并将融合的数据与惯导系统数据相结合,利用扩展卡尔曼滤波算法实现定位。为了评估算法在干扰和噪声下的导航定位精度,将惯导定位模块、卫星定位模块以及超宽带标签集成到一起进行实验。实验结果表明,所提融合定位方法的东向、北向定位均方根误差分别为6.95 cm和6.89 cm,最大定位误差为28.55 cm;在室内外过渡阶段,系统能够保持连续准确的定位,提高了复杂多变的室内外环境下的导航定位精度和稳定性。

    Abstract:

    In order to solve the problems of low positioning accuracy and poor continuity in the single navigation source positioning system in indoor and outdoor seamless positioning, a GNSS/UWB/IMU integrated indoor and outdoor seamless navigation and posi-tioning algorithm based on robust estimation was proposed. In the face of complex indoor and outdoor scene switching, the robustness estimation algorithm is used to evaluate the confidence level of the two observation signals collected by GNSS and UWB and fuse them, and the fused data is used as the new observation value, and the extended Kalman filter algorithm is used to fuse the new observation value with the data of the inertial system to achieve fusion positioning. In order to evaluate the navi-gation and positioning accuracy of the algorithm in the presence of interference and noise, the inertial navigation positioning module, the satellite positioning module and the ultra-wideband tag were integrated together and field tests were carried out. Experiments show that the root mean square error of the proposed fusion positioning method is 6.40cm in the east direction and 6.73cm in the north direction, and the maximum error is not more than 28.55cm.

    参考文献
    [1] Mallik M, Panja A K, Chowdhury C. Paving the way with machine learning for seamless indoor-outdoor positioning: A survey[J]. Information Fusion, 2023, 94: 126-151.
    [2] 武文博,吕志伟,周玟龙,等. 基于组合历元新息抗差的GNSS/INS欺骗检测方法[J]. 中国惯性技术学报,2024, 32(4): 354-362.
    [3] 欧阳明达,孙艺轩,邝英才,等. 应用抗差估计SITAN算法的水下重力匹配导航方法[J]. 中国惯性技术学报,2021, 29(2): 214-220.
    [4] Gao Y, Liu S, Atia M, et al. INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm[J]. Sensors, 2015, 15(9): 23286-23302.
    [5] Sun Y, Shang J, Yang Y. Indoor and outdoor seamless localization method based on GNSS and WLAN[J]. Lecture Notes in Electrical Engineering, 2020, 516: 1412-1419.
    [6] 廖健驰,李星星,冯绍权. GVIL:基于图优化的GNSS PPP/视觉/惯性/激光雷达紧组合算法[J]. 武汉大学学报(信息科学版),2023, 48(7): 1204-1215.
    [7] 李旭,孔鑫,刘锡祥. 基于交互多模型距离平滑的UWB/IMU因子图组合导航方法[J]. 中国惯性技术学报,2022, 30(3): 322-327.
    [8] Yao L, Li M, Xu T, et al. GNSS/UWB/INS indoor and outdoor seamless positioning algorithm based on fed-eral filtering[J]. Measurement Science and Technology, 2024, 35(1): 015135.
    [9] Fan G, Sheng C, Yu B, et al. An indoor and outdoor multi-source elastic fusion navigation and positioning algorithm based on particle filters[J]. Future Internet, 2022, 14(6): 169.
    [10] Zhao L, Guo X, Zhu B. Two-stage weighted filtering algorithm for seamless positioning in indoor-outdoor crossover areas[J]. IEEE Sensors Journal, 2023, 23(18): 21718-21727.
    [11] 刘慧敏, 李国丽, 董翔, 等. 移动机器人室内外无缝切换定位方法研究[J]. 制造业自动化, 2022, 44(4):83-88.
    [12] 陈国敏. 基于UKF和抗差估计的外弹道估计方法[D]. 国防科学技术大学,2009.
    [13] 杨元喜,高为广. 基于多传感器观测信息抗差估计的自适应融合导航[J]. 武汉大学学报(信息科学版),2004, 29(10): 885-888.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:5
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-09-27
  • 最后修改日期:2024-12-09
  • 录用日期:2024-12-18
文章二维码