基于多任务学习的电机声信号域自适应故障诊断方法
作者:
作者单位:

1.西南大学工程技术学院 重庆 400715; 2.重庆大学机械与运载工程学院 重庆 400030

中图分类号:

TH17;TP206+.3;TN06

基金项目:

中央高校基本科研业务费专项(2024CDJZC0-012, 2024CDJGF-031)、气动院气动噪声重点实验室“新风向”联合创新项目(XFX20220204)资助


Domain-adaptation fault diagnosis method for motor acoustic signals based on multi-task learning
Author:
Affiliation:

1.College of Engineering and Technology,Southwest University, Chongqing 400715, China; 2.College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400030, China

  • 摘要
  • | |
  • 访问统计
  • | | | | |
  • 文章评论
    摘要:

    由于高质量的电机故障数据样本的采集和处理成本过高,新采集的数据样本存在无标注的情况,而域自适应可以借助现有数据对无标注的新数据进行处理识别,因而在故障诊断领域受到了广泛关注。在基于域自适应的电机故障诊断领域,存在两个问题:常用域自适应框架下会出现多任务梯度冲突。同时,现有方法极少研究复杂运行状态之间的迁移任务。因此本文提出了AMDA电机故障诊断方法以解决上述问题。AMDA方法利用多层一维卷积层、批量归一化层和池化层构成的特征提取器,提取源域和目标域的高阶特征;之后结合使用基于对抗的方法和基于分布差异度量的方法,减小源域和目标域数据特征的分布差异;最后引入基于梯度对齐的多任务学习方法,对故障分类器、域判别器和分布差异度量三个任务进行平衡和优化,减小多任务梯度之间的冲突,最终得到基于多任务学习的电机声信号的域自适应故障诊断模型。使用所提出的AMDA方法在多个试验设置下进行跨运行状态故障诊断试验,试验结果表明,AMDA方法在基于声信号的跨运行状态电机故障诊断试验中,完成了稳定运行状态(Stable)、启动运行状态(Start)和循环运行状态(NEDC)之间的迁移任务,最高诊断正确率可达91.47%。同时,AMDA方法在两个对比试验中,性能均显著高于其他方法,具有一定的研究价值和工程应用价值。

    Abstract:

    The high cost of collecting and processing high-quality motor fault data samples has resulted in the collection of newly unlabeled data samples. Domain adaptation has emerged as a promising approach to process and recognize new unlabeled data with the help of existing data. This has led to a surge of interest in domain adaptation in the field of fault diagnosis. In the field of electric machine fault diagnosis based on domain adaptation, two issues require attention. A conflict arises in the gradients of multiple tasks when employing the conventional domain adaptation framework. And, the existing methods rarely study the migration task between complex states. In light of the aforementioned issues, this paper puts forth AMDA motor fault diagnosis method based on multi-task alignment, with the aim of providing a solution to the aforementioned problems. The AMDA method employs a feature extractor comprising a multi-task one-dimensional convolutional layer, a batch normalization layer, and a pooling layer, to extract the higher-order features of the source and target domains. Subsequently, a combination of an adversarial-based approach and a distributional difference metric-based approach is utilized to reduce the distributional differences of data features. Finally, a multi-task learning approach based on gradient alignment is introduced to balance and optimize the three tasks: fault classifier, domain discriminator, and distributional difference metric. By reducing the conflicting gradients among the tasks, this approach ultimately enables the development of a domain adaptation fault diagnosis model for acoustic signals of electric motors based on multitask learning. Cross-operational state fault diagnosis tests are conducted under multiple test setups using the proposed AMDA method, and the test results demonstrate that the AMDA method effectively accomplishes the migration task between stable operational state (Stable), start operational state (Start), and European driving cycle state (NEDC) in the acoustic signal. Based on cross-operational state electric motor fault diagnosis tests, the highest diagnosis accuracies reach 91.49%. Furthermore, the performance of AMDA method is significantly higher than that of other methods in the two comparison tests, which offer valuable insights for research and engineering applications.

    参考文献
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王永淇,肖登宇,胡嫚,秦毅,吴飞.基于多任务学习的电机声信号域自适应故障诊断方法[J].电子测量技术,2025,48(1):8-19

复制
分享
文章指标
  • 点击次数:157
  • 下载次数: 198
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 在线发布日期: 2025-02-24
文章二维码